

Schweizer Regel Règle Suisse Regola Svizzera

Domaine spécialisé Électrotechnique 461439

Ersetzt / Remplace / Replaces:

Ausgabe / Edition: 2018-05

ICS Code:

Tableaux de répartition jusqu'à 125 A destinés à être utilisés par des personnes ordinaires (DBO)

Installationsverteiler bis 125 A für die Bedienung durch Laien DBO Quadro di distribuzione fino a 125 A per l'uso da parte di persone comuni DBO

Für diese Norm ist das technische Komitee CESTK 121B des Schweizerischen Elektrotechnischen Komitees CES zuständig.

La présente norme est de la compétence du comité technique TK 121B du Comité Electrotechnique Suisse CES

The technical committee TK 121B of the Swiss Electrotechnical Committee CES is in charge of the present standard.

Ref. Nr. / No de réf. / Ref. no.: SNR 461439:2018 fr

Gültig ab / Valide de / Valid from: 2018-05

Herausgeber / Editeur / Editor Electrosuisse Luppmenstrasse 1 CH-8320 Fehraltorf © Electrosuisse Vertrieb / Distributeur / Distribution Electrosuisse Luppmenstrasse 1 CH-8320 Fehraltorf

Anzahl Seiten / Nombre de Pages / Number of p

32

Preisklasse / Classe de prix / price class: 0000 Barcode:

Avis de droit d'auteur

© Electrosuisse 2019

Tous droits réservés. L'ouvrage et ses parties sont protégés par le droit d'auteur. Toute utilisation dans des cas autres que ceux autorisés par la loi nécessite l'accord écrit préalable d'Electrosuisse.

Electrosuisse
Comité Electrotechnique Suisse (CES)
Luppmenstrasse 1
CH – 8320 Fehraltorf, ZH
Téléphone: 141 58 595 11 11

Téléphone: +41 58 595 11 11 E-Mail: <u>ces@electrosuisse.ch</u> <u>www.electrosuisse.ch</u>

La définition suivante de la norme, de la règle et de la ligne directrice s'applique:

Norme (Norme Suisse SN)

Publication normative élaborée par des spécialistes suivant une procédure internationale Vorgaben reconnue.

Règle (Règle Suisse SNR)

Publication à caractère normatif élaborée par des spécialistes moyennant une enquête publique facultative ou restreinte. La durée de validité des règles suisses est limitée.

Guide (Guide Suisse SNG)

Publication à caractère non normatif destinée à renseigner sur l'élaboration et l'utilisation de normes et de règles.

Exclusion de responsabilité

L'éditeur décline toute responsabilité pour des dommages pouvant résulter de l'utilisation des présentes publications.

Tableaux de répartition jusqu'à 125 A destinés à être utilisés par des personnes ordinaires (DBO)

SNR 461439:2018

	Tableaux de répartition jusqu'à 125 A destinés à être utilisés par des personnes ordinaires (DB	O)
	Titelseiten	
	Deckblatt	
	Sommaire	4
	Préface	6
1.	Domaine d'application	7
2.	Bases légales	8
2.1.	Ordonnance sur les matériels électriques à basse tension (OMBT RS 734.26)	8
2.2.	Contenu de la documentation technique	8
3.	Informations et documentation	ç
4.	Conditions de service	10
4.1.	Conditions de service normales	10
4.2.	Conditions de service spéciales	10
ō.	Exigences de construction	11
5.1.	Enveloppe	11
5.1.1.	Résistance mécanique	11
5.1.2.	Degré de protection IP	11
5.1.3.	Résistance des matériaux isolants contre une chaleur exceptionnelle et le feu consécutivement	t
5.1.4.	Protection anticorrosion	11
5.1.5	Utilisation d'enveloppes testées:	11
5.1.6	Utilisation de cadres pour assemblage individuel:	11
5.2.	Protection contre les chocs électriques	11
5.2.1.	Protection principale	11
5.2.2.	Protection en cas de défaut:	13
5.3.	Montage de matériels	14
5.4.	Inscriptions	15
5.5.	Circuits internes et connexions	15
5.5.1.	Conducteurs actifs d'un DBO protégés par des dispositifs de protection contre les surintensité	s 5
5.5.2.	Conducteurs actifs d'un DBO qui ne sont pas protégés par des dispositifs de protection contre	ļ
5.5.3.	Identification des conducteurs	16
5.6.	Connexions pour conducteurs introduits de l'extérieur	16
5.7.	Connexions aux cadres de portes	16
6.	Exigences de performance	17
3.1.	Caractéristiques d'isolation	17
6.2.	Températures limites	17
6.3.	Puissances dissipées des matériels	17
3.3.1.	Cadre pour assemblage individuel:	17
	Valeurs indicatives des puissances dissipées par les matériels	19

5.3.3.	Autres temperatures ambiantes a l'interieur de l'EA	20
6.3.4.	Facteurs de correction pour facteur de diversité assignée (RDF)	20
6.4.	Tenue aux courts-circuits / Coordination des dispositifs de protection	20
6.5.	Compatibilité électromagnétique	20
7.	Vérifications	21
7.1.	Méthode de vérfication de conception pour les cadres pour assemblage individuel	21
7.2.	Méthode de vérification de conception pour enveloppes vides selon SN EN 62208	22
7.3.	Méthode de vérification individuelle de série	23
3.	Références bibliographiques	24
	Annexes	25
	A.1 Annexe A.1 Diagramme séquentiel «Enveloppes vides»	25
	A.2 Annexe A.2 Diagramme séquentiel «Cadres pour assemblage individuel»	26
	A.2 Annexe - Puissance de rayonnement des cadres pour assemblage individuel	27
	B.1 Annexe B1 Exemple d'évaluation de la conformité aux températures limites de tableaux e	de
	B.1.1 Situation de départ: Maison individuelle (plan d'installation)	30
	B.1.2 Espace requis et détermination de la puissance de rayonnement de l'enveloppe	31
	Abbinder	

Préface

Le champ d'application des tableaux de répartition jusqu'à 125 A destinés à être utilisés par des personnes ordinaires (DBO) a été défini préalablement, afin qu'ils puissent être établis par le fabricant conformément aux exigences légales.

En particulier, les aspects:

- courant nominal du DBO
- installations de protection contre les surintensités destinées à être utilisées par des personnes ordinaires (DBO)
- tenue aux courts-circuits
- vérification de l'échauffement
- caractéristiques d'isolation
- vérification de la conception,
- vérification individuelle de série
- déclaration de conformité
- mise sur le marché

doivent être pris en compte.

Le contenu de la norme SN 411000 chap. 5.3.9 reste valable jusqu'au 31 décembre 2019. Pendant la période du 1er juillet 2017 au 31 décembre 2021, les ensembles d'appareillage destinés à être utilisés par des personnes ordinaires peuvent être établis selon la

- série de normes SN EN 61439 ou
- SNR 461439 ou
- SN 411000 chapitre 5.3.9.

1. Domaine d'application

La SNR 461439 définit les exigences pour les ensembles d'appareillage (DBO) (tableaux de répartition) destinés à être utilisés par des personnes ordinaires.

La SNR est dérivée de la norme SN EN 61439-3 et comporte d'autres restrictions qui simplifient l'obligation de vérification et d'essai.

Les critères suivants s'appliquent aux DBO selon SNR 461439:

 ils sont prévus pour une utilisation par des personnes ordinaires (par exemple pour des opérations de commutation et le remplacement de cartouches fusibles), par ex. pour l'application dans les pièces d'habitation.

Note:

Les DBO ne contiennent pas de systèmes de fusibles NH! Les systèmes de fusibles NH ne sont pas destinés à être utilisés par des personnes ordinaires. (Voir l'annexe C.1)

- la tension assignée maximale contre la terre est de 300 V tension alternative;
- le courant assigné (Inc) maximal des circuits de départ et le courant assigné (InA) maximal du dispositif
 DBO sont respectivement de 63 A et de 125 A;
- ils sont prévus pour la distribution de l'électricité;
- ils sont fermés et fixes;
- pour une installation à l'intérieur ou à l'extérieur (seules les enveloppes métalliques résistantes à la corrosion sont approuvées pour une installation à l'extérieur);
- les moyens d'exploitation utilisés sont testés selon la norme de produit correspondante;
- les moyens d'exploitation utilisés correspondent à la catégorie de surtension ≥ 3.

2. Bases légales

2.1. Ordonnance sur les matériels électriques à basse tension (OMBT RS 734.26)

Sur demande, les documents suivants doivent pouvoir être soumis à l'office de contrôle ou à l'autorité compétente (Inspection fédérale des installations à courant fort ESTI) pendant dix ans à compter de la date de mise sur le marché (OMBT art. 4):

- déclaration de conformité selon l'art. 8 OMBT
- documentation technique selon l'art. 12 OMBT

2.2. Contenu de la documentation technique

- 1. Description générale du DBO:
 - fait partie de la déclaration de conformité (exemple: distributeur pour habitation)
- 2. Dessins, dessins de fabrication et plans
 - Agencement / disposition (p. ex. en cas d'une distribution principale avec emplacements de compteur)
 - Fiches techniques des fabricants d'armoires et de moyens d'exploitation
 - Schéma apuré ou légendes pour les petits DBO
- 3. Descriptions et explications
 - Instructions pour la manutention, l'installation, l'exploitation et la maintenance
- 4. Normes appliquées
 - fait partie de la déclaration de conformité (SN EN 61439-3)
- 5. Rapports d'essais et résultats
 - Protocole(s) de vérification, vérification de la conception/individuelle de série
 - Évaluation appropriée du risque s'il existe un danger résultant d'une manipulation incorrecte ou d'instructions omises

3. Informations et documentation

Le fabricant doit indiquer toutes les valeurs assignées et les informations requises. Celles-ci peuvent être fournies au moyen d'une plaquette de marquage (plaque signalétique).

Exemple plaquette de marquage

Fabricant:

Muster AG Paketstrasse 439 1439 Schalthausen Dés. du type / no. d'identification: DS App. 1^{er} étage gauche, Birkenstr. 2 CH-5002 Date de fabrication et norme de produit: 24.05.20XX SNR 461439

Valeurs assignées:

 $U_{n}\!\!:\,1x230\,V_{AC}/3x400\,V_{AC}$

I_{nA}: 25 A

Degré de protection IP:

2XC

Système de mise* à la terre:

TN-S

Données relatives au respect de la tenue aux courts-circuits

Dispositif de protection contre les surintensités placé en amont: Diazed 25 A gG ou LS 25 A/I_{cn} 10000 Instructions particulières:

Les touches d'essai des dispositifs de protection à courant différentiel-résiduel intégrés doivent être actionnées 2x par an. Toutes les réparations doivent être effectuées exclusivement par des spécialistes en électricité. Danger de mort en cas de retrait ou d'absence des barrières de protection!

Ajout dans le champ degré de protection IP: Installation en intérieur/extérieur dans le champ Valeurs assignées:

- Fréquence assignée
- Facteur de charge assignée (RDF)

Les documents doivent spécifier, le cas échéant, les conditions pour:

- manipulation,
- transport,
- installation et montage,
- exploitation et maintenance du DBO et les moyens d'exploitation qu'il comprend.

^{*} soit sur la plaque signalétique, soit dans la documentation technique.

4. Conditions de service

4.1. Conditions de service normales

Les ensembles d'appareillage selon cette SNR sont prévus pour être utilisés dans les conditions de service suivantes:

- Température ambiante pour l'intérieur:
 La température ambiante se situe entre ≥ -5 °C et ≤ +40 °C et sa valeur moyenne est ≤ +35 °C sur une période de 24 h.
- 2. Température ambiante en plein air: La température ambiante se situe entre ≥ -25 °C et ≤ +40 °C et sa valeur moyenne est ≤ +35 °C sur une période de 24 h.
- 3. Conditions relatives à l'hygrométrie pour l'intérieur L'hygrométrie ambiante est ≤ 50 % à une température de +40 °C. En cas de températures inférieures, des valeurs d'hygrométrie plus élevées sont autorisées, par exemple 90% à une température de +20 °C . Il est recommandé de prendre en considération la formation occasionnelle et modérée de condensation consécutive à des variations de température.
- 4. Conditions relatives à l'hygrométrie en plein air
 L'hygrométrie ambiante peut atteindre temporairement 100 % à une température maximale de +25 °C.
 5. Altitude
- L'altitude du lieu d'emplacement est ≤ 2 000 m au-dessus du niveau moyen de la mer.

4.2. Conditions de service spéciales

Dans des conditions de services spéciales, telles que: valeurs de la température ambiante, de l'hygrométrie et/ ou de l'altitude etc. qui s'écartent des conditions normales de service spécifiées, voir EN 61439-3.

5. Exigences de construction

5.1. Enveloppe

5.1.1. Résistance mécanique

L'ensemble d'appareillage doit avoir la résistance mécanique suivante:

IK 05 pour DBO pour les applications en intérieur; (0,7J = 0,7 Nm)

IK 07 pour DBO pour les applications en plein air. (2 J = 2 Nm) Codes IK selon IEC 62262

5.1.2. Degré de protection IP

Le degré de protection d'un DBO pour une installation en intérieur doit être au moins IP 2XC si celui-ci est installé d'après les spécifications du fabricant.

Note:

Au minimum IP 23C pour les applications en plein air!

5.1.3. Résistance des matériaux isolants contre une chaleur exceptionnelle et le feu consécutivement à des influences électriques internes

Les matériaux isolants du DBO ne doivent pas être affectés par une chaleur exceptionnelle ni le feu. La preuve doit être apportée par un essai au fil incandescent conformément à la norme SN EN 60695-2.

Pour les caches et similaires, il convient d'utiliser des matériaux présentant un comportement au feu amélioré - c.-à-d. les matériaux doivent être ignifuges et avoir des caractéristiques auto-extinctrices.

5.1.4. Protection anticorrosion

En cas d'utilisation d'enveloppes non résistantes à la corrosion, il est impératif de fournir la preuve de la résistance à la corrosion conformément à la norme SN EN 61439-3.

5.1.5 Utilisation d'enveloppes testées:

En cas d'utilisation d'enveloppes testées conformes à la norme SN EN 62208 « Enveloppes vides destinées aux ensembles d'appareillage à basse tension - Règles générales », le fabricant de l'enveloppe fournira les preuves correspondantes.

5.1.6 Utilisation de cadres pour assemblage individuel:

Si des cadres pour assemblage individuel sont utilisés, les preuves suivantes doivent être fournies:

- Résistance mécanique
 - Résistance aux chocs des caches
 - Possibilités de transport et de montage, partitions de transport
- Essai au fil incandescent des caches isolants
- Degré de protection IP
- Résistance à la corrosion

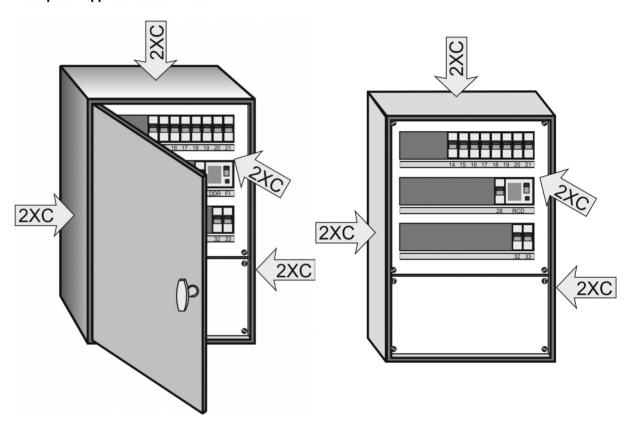
Les exigences de la norme SN EN 61439-3 s'appliquent.

5.2. Protection contre les chocs électriques

5.2.1. Protection principale

Le degré de protection IP d'au moins 2XC est exigé comme protection principale pour l'utilisation par des personnes ordinaires. Les surfaces horizontales d'enveloppes accessibles jusqu'à une hauteur de 1,60 m audessus de la surface d'appui doivent avoir un degré de protection IP d'au moins IPXXD.

Des ouvertures supérieures à le degré de protection IPXXC défini sont autorisées pendant le remplacement de certaines lampes ou éléments fusibles.

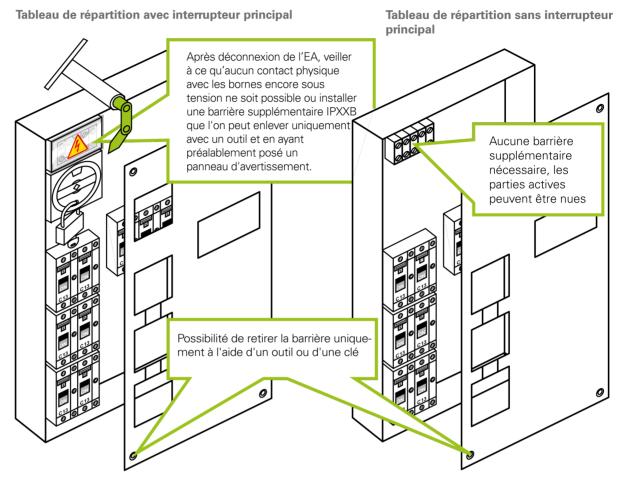

Les vis de fixation des caches ne doivent pouvoir être manipulées qu'avec des outils. (l'ouverture manuelle ne doit pas être possible).

Les enveloppes des ensembles d'appareillage avec portes doivent pouvoir être ouvertes sans outils. Idéalement, les caches doivent être subdivisés.

Note:

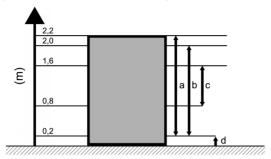
La subdivision des caches garantit que les parties sous tension adjacentes restent couvertes lors des travaux sur les bornes de sortie.

Exemples d'applications en intérieur


Enveloppe pour DBO avec porte (typique: enveloppe selon SN EN 62208) Il doit être possible d'ouvrir la porte sans outils ou clés. Cache subdivisé.

Enveloppe pour DBO avec porte (typique: Cadre pour assemblage individuel ou enveloppe selon SN EN 62208). Cache subdivisé.

Les vis (de fixation) pour fixer les plaques assurant la protection contre les contacts ne doivent pas pouvoir se desserrer manuellement.


5.2.2. Protection en cas de défaut:

Lors de l'utilisation d'ensembles d'appareillage avec isolation de protection 🔲 le conducteur de protection à l'intérieur du DBO doit être isolé.

5.3. Montage de matériels

Lors de l'installation et du câblage de moyens d'exploitation, il est impératif de respecter les spécifications des fabricants. Les dimensions suivantes s'appliquent à la disposition et à la manipulation des moyens d'exploitation:

Figure 5.3.1: Hauteurs de montage

Mesures à partir de la surface d'appui

- a) Affichage
- b) Éléments de commande
- c) Arrêt d'urgence / Arrêt de secours
- d) Connexions ≥ 0,2 m au-dessus de la surface d'appui

Note:

Si nécessaire, les prescriptions des distributeurs (TAB) doivent également être respectées.

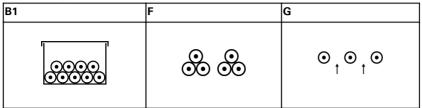
5.4. Inscriptions

A l'intérieur de l'ensemble d'appareillage, il doit être possible d'identifier clairement les circuits et leurs dispositifs de protection, les moyens d'exploitation, les bornes etc. Les marquages doivent être lisibles, permanents et adaptés aux influences de l'environnement correspondantes.

5.5. Circuits internes et connexions

5.5.1. Conducteurs actifs d'un DBO protégés par des dispositifs de protection contre les surintensités

Les tableaux suivants contiennent les courants admissibles des câbles monoconducteurs Cu pour la température ambiante dans l'ensemble d'appareillage: 40°C. Les valeurs des tableaux sont dérivées de la norme SN 410000 (NIBT) chapitre 5.2.3.


Tableau 5.5.1.1: Courant admissible / k_{GH} pris en compte (sections en mm²) Isolation PVC / Trois conducteurs chargés / Cu / Température du conducteur 70 °C / Température ambiante dans l'ensemble d'appareillage 40 °C

Mode de pose de référence	Ide	Courant de re amont	Courant de réglage (A) du dispositif de protection contre les surintensités en amont											
		10	13	16	20	25	32	40	50	63	80	100	125	
B1	1	1.5		2.5		4	6	10		16	25	35	50	avec
	6			2.5	4	6	10		16	25	35	50	70	k _{GH}
F	16]		1.5	2.5	4		6	10	16	25		35	
G	1			1.5	•	2.5		4	6	•	10	16	25	

Tableau 5.5.1.2: Courant admissible / k_{GH} pris en compte (sections en mm²) Isolation VPE / EPR / Trois conducteurs chargés / Cu / Température du conducteur 90 °C / Température ambiante dans l'ensemble d'appareillage 40 °C

Mode de pose de référence	Nombre de circuits	Courant de ré amont	Courant de réglage (A) du dispositif de protection contre les surintensités en mont							en				
		10	13	16	20	25	32	40	50	63	80	100	125	
B1	1	1.5			2.5		4	6		10	16	25		avec
	6				4		10	•	16	25	35	50	70	k _{GH}
F	1				1.5	2.5	4	6	•	10	16	25	•	
(câbles unipolaires)	6				2.5	•	4	6	10		16	25	35	
G	1				1.5	2.5		4	•	6	10		16	

Modes de pose

5.5.2. Conducteurs actifs d'un DBO qui ne sont pas protégés par des dispositifs de protection contre les courts-circuits

Ces conduites doivent être posées de manière à réduire au minimum le risque de court-circuit. Ces conduites ne doivent pas dépasser 3 m de longueur et répondre à l'une des conditions suivantes:

- posées individuellement dans des tuyaux en matériau isolant
- double isolation (câble)
- isolation renforcée (très haute résistance mécanique [IEC 60502])
- conducteur à isolation principale, par ex. conduites selon IEC 60227-3 dotées d'une isolation supplémentaire, par ex. des conduites, individuellement recouvertes d'une gaine thermorétractable

5.5.3. Identification des conducteurs

Type et étendue du marquage des conducteurs aux bornes auxquelles ces conducteurs sont connectés ou aux extrémités des conducteurs eux-mêmes, par ex. par mise en oeuvre, les couleurs ou les symboles (glyphes), sont la responsabilité du fabricant de l'ensemble d'appareillage et doivent être conforme aux informations dans les schémas de câblage et les dessins. De préférence, les conducteurs sont marqués avec des couleurs de fil:

Identification des conducteurs par des couleurs de fil (selon NIBT SN 411000):

L1	=	brun
L2	=	noir
L3	=	gris
N	=	bleu (de préférence bleu clair)
PE	=	vert-jaune
PEN	=	vert-iaune et marqué en bleu aux extrémités

Pour d'autres fonctions, toutes les autres couleurs et combinaisons peuvent être utilisées, à l'exception du vert et du jaune.

5.6. Connexions pour conducteurs introduits de l'extérieur

Le nombre de connexions de conducteurs neutres ne doit pas être inférieur au nombre de circuits terminaux nécessitant une connexion du neutre. Les connexions doivent être disposées ou marquées dans le même ordre que celles des conducteurs de phase correspondants. Les ouvertures dans les passe-câbles/presse-étoupes, les plaques d'extrémité, etc. doivent être conçues de sorte que le degré de protection IP prévu soit maintenu après l'insertion des câbles/ conduites.

5.7. Connexions aux cadres de portes

Les câblages des cadres de portes doivent être posés dans un tube ou au moyen d'un câble (ruban en spirale interdit).

6. Exigences de performance

6.1. Caractéristiques d'isolation

L'ensemble d'appareillage doit être capable de résister à des surtensions temporaires ou transitoires. Pour ce faire, tous les moyens d'exploitation sont:

- testés selon la norme produit correspondante,
- catégorie de surtension ≥ 3,
- disposés et câblés selon les instructions du fabricant (distances).

6.2. Températures limites

Les ensembles d'appareillage et leurs circuits doivent être en mesure de supporter leurs courants assignés pour lesquels les valeurs assignées des composants, leur adéquation et leur application sont prises en considération sans dépasser les températures limites.

Les matériels utilisés doivent être adaptés à des températures ambiantes (dans l'enveloppe des ensembles d'appareillage) de 40 °C.

Selon le type d'installation, les températures ambiantes suivantes (en dehors des ensembles d'appareillage) doivent être utilisées pour les calculs:

Installation en intérieur	Installation en extérieur				
20 °C ou 25 °C	30 °C				
s'applique au montage en surface et au montage encastré					

Note:

Ces températures ambiantes ne sont pas applicables en extérieur dans des endroits exposés aux rayons directs du soleil.

6.3. Puissances dissipées des matériels

La puissance dissipée effective des moyens d'exploitation installés ne doit pas dépasser la puissance que l'enveloppe peut fournir à la température admissible dans l'enveloppe de 40 °C.

La puissance dissipée totale des moyens d'exploitation installés est déterminée selon les spécifications du fabricant. Les fabricants indiquent la puissance dissipée des moyens d'exploitation dans leurs fiches techniques.

La puissance dissipée effective des conducteurs, des dispositif de protection contre les surintensités ou des systèmes de contact dépend quadratiquement du courant de service correspondant.

Différentes règles s'appliquent à la conversion des renseignements sur les pertes figurant dans la documentation du fabricant en puissance dissipée effective réelle, selon le type de moyen d'exploitation considéré. Il est donc conseillé de déterminer d'abord la puissance dissipée effective de chaque groupe avec une dépendance similaire de la puissance dissipée sur le courant de service en prenant en compte, le cas échéant, le facteur de diversité assigné puis d'ajouter d'abord cette puissance dissipée à la puissance dissipée totale dans l'enveloppe.

6.3.1. Cadre pour assemblage individuel:

En cas d'utilisation de cadres pour assemblage individuel, il convient de déterminer la puissance de rayonnement de «l'enveloppe». Certaines valeurs de puissance de rayonnement peuvent être extraites des tableaux suivants. Se reporter aux tableaux plus complets sur la puissance de rayonnement pour les cadres pour assemblage individuel de l'annexe A.2.

Tableau 6.3.1.1: Puissance de rayonnement Ps en W pour des cadres pour assemblage individuel de 100 mm pour $\Delta\upsilon$ 20 K

Profondeur	Profondeur 100								
Hauteur	Largeur en mm								
mm	600	800	1000	1200	1500				
600	112	141	169	198	241				
1000	173	216	260	303	368				
1500	250	311	373	435	527				
1800	296	368	441	513	622				
2000	326	406	486	566	686				

Tableau 6.3.1.2: Puissance de rayonnement Ps en W pour des cadres pour assemblage individuel de 150 mm pour $\Delta\upsilon$ 20 K

Profondeur	150								
Hauteur mm	Largeur ei	Largeur en mm							
	600	800	1000	1200	1500				
600	135	167	199	231	279				
1000	205	252	298	245	415				
1500	292	357	422	487	585				
1800	345	420	496	572	686				
2000	379	463	546	629	754				

Tableau 6.3.1.3: Puissance de rayonnement Ps en W pour des cadres pour assemblage individuel de 200 mm pour $\Delta \upsilon$ 20 K

Profondeur	Profondeur 200								
Hauteur	Largeur en mm								
mm	600	800	1000	1200	1500				
600	158	193	229	264	317				
1000	237	287	337	387	462				
1500	335	403	471	540	642				
1800	393	473	552	631	750				
2000	433	519	606	693	823				

6.3.2. Valeurs indicatives des puissances dissipées par les matériels

Comme alternative aux informations contenues dans les fiches techniques correspondantes, les puissances dissipées peuvent être extraites des tableaux suivants. Les valeurs indicatives des puissances dissipées reposent sur une température maximale de 40 °C dans l'enveloppe.

Valeurs indicatives des puissances dissipé Matériels	es Courant nominal	Pôles	Pv en W	
Disjoncteur de canalisation	jusqu'à 13 A	à 1 pôles	2.0	
toutes les indications LS par pôle (N non inclus)	16 jusqu'à 32 A	16 jusqu'à 32 A à 1 pôles		
	40 jusqu'à 63	à 1 pôles	6.0	
Dispositif de protection à courant différentiel-	25 A	à 2 pôles	2.0	
résiduel (disjoncteur FI)	25 A	à 4 pôles	3.5	
	40 A	à 2 pôles	6.0	
	40 A	à 4 pôles	10.0	
	63 A	à 2 pôles	10.0	
	63 A	à 4 pôles	14.0	
FI-LS	jusqu'à 16 A	à 2 pôles	4.0	
	jusqu'à 16 A	à 4 pôles	8.0	
	20 jusqu'à 32	à 2 pôles	6.5	
	20 jusqu'à 32	à 4 pôles	13.0	
	40 A	à 2 pôles	8.5	
	40 A	à 4 pôles	17.0	
Cartouches fusibles avec coupe-circuit				
Neozed	2 – 32 (ou 25 A)		3.5	
	35 – 63		5.5	
Diazed II et III	2 – 20		3.5	
	25 – 40		5.5	
	50 – 63		7.0	
Contacteur de puissance	jusqu'à 20 A	à 4 pôles	6.5	
	jusqu'à 20 A	à 4 pôles	12.0	
Disjoncteurs de protection des moteurs	jusqu'à 1.6 A	à 3 pôles	6.0	
	2.0 jusqu'à 32 A	à 3 pôles	8.0	
Relais thermiques	jusqu'à 5.0 A	à 3 pôles	6.0	
	> 5.0 jusqu'à 40	à 3 pôles	18.0	
Alimentations / Blocs d'alimentation	jusqu'à 120 W / jusqu'à	640 mA	15.0	
Minuterie, relais multifonction			2.0	

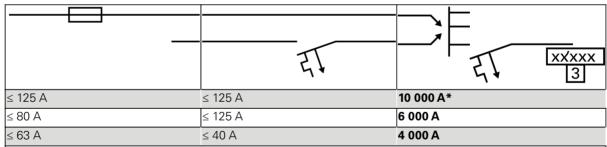
Valeurs indicatives des puissances dissipées Matériels	Courant nominal	Pôles	Pv en W
Petit API (jusqu'à 4 sorties)			10.0

- Le câblage et la borne de sortie par pôle sont compris dans le calcul.
- Le cas échéant, les produits utilisés indiquent une puissance dissipée inférieure.
- Les valeurs sont basées sur 80% de la charge mais les valeurs nominales sont utilisées en raison du comportement quadratique (64%
 Pv) les bornes de sortie et le câblage sont inclus.

6.3.3. Autres températures ambiantes à l'intérieur de l'EA

Si l'ensemble d'appareillage est dimensionné pour des températures autres que 40 °C, la conversion doit être effectuée conformément à la norme SN EN 61439-1 pour d'autres températures ambiantes à l'intérieur de l'ensemble d'appareillage.

6.3.4. Facteurs de correction pour facteur de diversité assignée (RDF)


Nombre des circuits de départ	Facteur de diversité présumé
2 et 3	0,8
4 et 5	0,7
6 et 9	0,6
10 et plus	0,5

6.4. Tenue aux courts-circuits / Coordination des dispositifs de protection

Les ensembles d'appareillage doivent résister aux contraintes thermiques et dynamiques causées par des courants de court-circuit.

La tenue aux courts-circuits de l'ensemble d'appareillage est garantie si les valeurs indiquées dans le tableau ne sont pas dépassées:

Tableau 6.4.1: Pouvoir de coupure assigné minimal pour les circuits de sortie en fonction du dispositif de protection contre les surintensités en amont

Si des disjoncteurs de puissance sont utilisés comme dispositifs de protection contre les surintensités, la protection de Back-Up doit être prouvée.

- * de 10 kA_{eff} (17 kA_{el})
- ** les systèmes de fusibles NH ne sont pas autorisés à l'intérieur de l'ensemble d'appareillage

La tenue aux courts-circuits de l'ensemble d'appareillage doit être prouvée si les valeurs du tableau 6.4.1 ne sont pas respectées.

Si seules des cartouches fusibles sont utilisées pour les départs (max. 63A), la preuve de la tenue aux courtscircuits est fournie par le pouvoir de coupure élevé et l'effet limiteur de courant des cartouches fusibles.

6.5. Compatibilité électromagnétique

Il n'est pas nécessaire d'effectuer des essais d'immunité CEM et de rayonnement électromagnétique parasite sur les ensembles d'appareillage si les conditions suivantes sont remplies:

a) Les moyens d'exploitation installés correspondent à la directive CEM

b) L'installation interne et le câblage sont effectués conformément aux spécifications des fabricants de moyens d'exploitation (disposition relative aux interférences mutuelles, aux câbles blindés, à la mise à la terre, etc.).

7. Vérifications

7.1. Méthode de vérfication de conception pour les cadres pour assemblage individuel

Paragraphe dans 61439-1	Vérification de:	Vérification fournie par: Mesure Méthode	Partie de la vérification de la conception: Document / Pièce justificative / Résultat / Rapport
10.2	Résistance des matériaux et des pi	ièces	
10.2.1	Résistance mécanique	Choix des composants pour le lieu d'emplacement et les conditions de service prévus	Fiches techniques des composants utilisés
10.2.2	Résistance à la corrosion	Aluminium ou matériaux isolants Fixations, charnières, serrures etc. résistantes à la corrosion Métaux ferreux d'enveloppes et d'éléments de construction	aucune preuve requise Fiches techniques des composants utilisés Procédure d'essai selon 10.2.2
10.2.3	Propriétés des matériaux isolants, résistance à la chaleur	Choix des matériaux isolants avec essai au fil incandescent (CEI 60695-2-10 et11)	Fiches techniques des composants utilisés
10.2.4	Résistance aux UV pour matériaux isolants	Installation en intérieur	aucune preuve requise
10.2.5	Levage (par ex. oeillets de levage)	sans objet	
10.2.6	Résistance aux chocs	Épaisseurs des matériaux adaptées à la surface et au nombre de points de fixation (voir 5.1.1)	Fiches techniques des composants utilisés ou essai de résistance aux chocs
10.2.7	Résistance des inscriptions	Installation en intérieur	aucune preuve requise
10.3	Classe de protection des enveloppes et caches Degré de protection IP 2XC mini respecté	Essai du degré de protection IP conformément à la norme SN EN 60529 avec sonde de test correspondante	consigné dans le procès-verbal
10.4	Distances d'isolement et lignes de fuite	Distances d'isolement et lignes de fuite selon le paragraphe 3.5.1 respectées → Vérification par examen visuel	consigné dans le procès-verbal
10.5	Continuité de la connexion entre les corps (cadre) et le conducteur de protection	Garantie par plusieurs raccords vissés de la construction. Les raccords vissés utilisés comme raccords PE doivent être protégés contre le desserrage.	
10.6	Montage de moyens d'exploitation	Garanti par le respect des spécifications du fabricant → Vérification par examen visuel	consigné dans le procès-verbal
10.7	Circuits internes / connexions	Garanti par le respect des spécifications du fabricant et par le respect des sections minimales conformément au 5.5.1.1 ou 5.5.1.2 → Vérification par examen visuel	consigné dans le procès-verbal
10.8	Connexions de l'extérieur	Nombre des bornes, taille des bornes, espace de raccordement suffisant, marquage → Vérification par examen visuel	consigné dans le procès-verbal

Paragraphe dans 61439-1	Vérification de:	Vérification fournie par: Mesure Méthode	Partie de la vérification de la conception: Document / Pièce justificative / Résultat / Rapport
10.9	Caractéristiques d'isolation	Choix des moyens d'exploitation avec une résistance de surtension suffisante Résistance d'isolement: La preuve est fournie en mesurant le Riso pour la vérification individuelle de série.	
10.10	Vérification de l'échauffement	→ Calcul conformément au 3.5.3	Calcul
10.11	Preuve de la tenue aux courts-circuits	non requis	
10.12	Preuve de la compatibilité électromagnétique	facultatif	
10.13	Preuve du fonctionnement mécanique	sans objet	

7.2. Méthode de vérification de conception pour enveloppes vides selon SN EN 62208

Paragraphe dans 61439-1	Vérification de:	Vérification fournie par: Mesure Méthode	Partie de la vérification de la conception: Document / Pièce justificative / Résultat / Rapport		
10.2	Résistance des matériaux et des piè	cces			
10.2.1	Résistance mécanique	Preuve par le fabricant de l'enveloppe vide	Fiches techniques du fabricant		
10.2.2	Résistance à la corrosion		de l'enveloppe vide		
10.2.3	Propriétés des matériaux isolants, résistance à la chaleur				
10.2.4	Résistance aux UV pour matériaux isolants				
10.2.5	Levage (par ex. oeillets pour levage)				
10.2.6	Résistance aux chocs				
10.2.7	Résistance des inscriptions en cas d'installation en intérieur Installation en extérieur	aucune preuve requise Formage, pressage, gravure, surface stratifiée etc.	consigné dans le procès- verbal		
10.3	Classe de protection des enveloppes et caches Degré de protection IP 2XC mini respecté	Essai du degré de protection IP conformément à la norme SN EN 60529 avec sonde de test correspondante	consigné dans le procès- verbal		
10.4	Distances d'isolement et lignes de fuite	Distances d'isolement et lignes de fuite selon le paragraphe 6.1 respectées → Vérification par examen visuel	consigné dans le procès- verbal		
10.5	Continuité de la connexion entre les corps (cadre) et le conducteur de protection	Preuve par le fabricant de l'enveloppe vide	Fiches techniques du fabricant de l'enveloppe vide		
10.6	Montage de moyens d'exploitation	Garanti par le respect des spécifications du fabricant →Vérification par examen visuel	consigné dans le procès- verbal		

Paragraphe dans 61439-1	Vérification de:	Vérification fournie par: Mesure Méthode	Partie de la vérification de la conception: Document / Pièce justificative / Résultat / Rapport		
10.7	Circuits internes / connexions	Garanti par le respect des spécifications du fabricant et par le respect des sections minimales conformément au 5.5.1.1 ou 5.5.1.2 → Vérification par examen visuel	consigné dans le procès- verbal		
10.8	Connexions de l'extérieur	Nombre des bornes, taille des bornes, espace de raccordement suffisant, marquage → Vérification par examen visuel	consigné dans le procès- verbal		
10.9	Caractéristiques d'isolation	Choix des moyens d'exploitation avec une résistance de surtension suffisante Résistance d'isolement: La preuve est fournie en mesurant le Riso pour la vérification individuelle de série.	Fiches techniques des composants utilisés pour prouver la catégorie de surtension		
10.10	Vérification de l'échauffement	→ Calcul conformément au 6.3	Calcul		
10.11	Preuve de la tenue aux courts-circuits	non requis			
10.12	Preuve de la compatibilité électromagnétique	facultatif			
10.13	Preuve du fonctionnement mécanique	sans objet			

7.3. Méthode de vérification individuelle de série

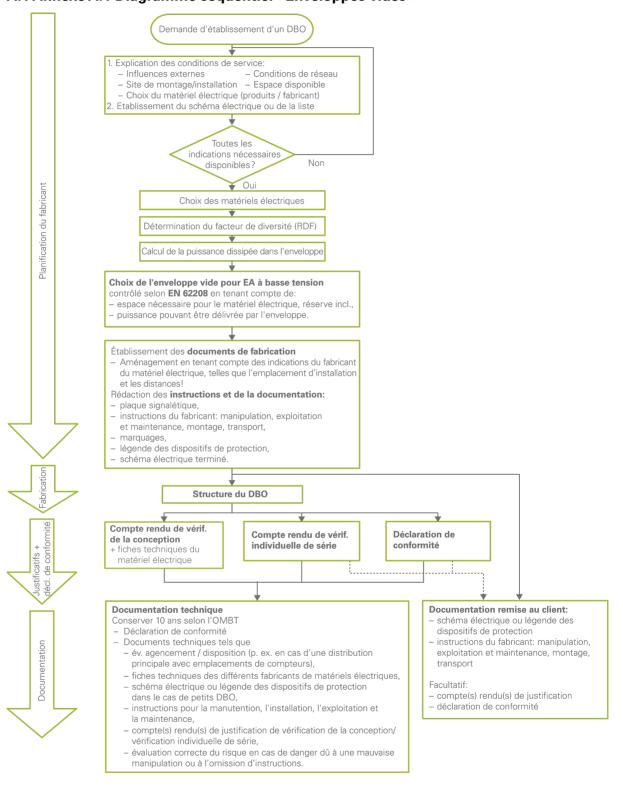
Paragraphe dans 61439-1	Vérification de:	Vérification fournie par: Mesure Méthode	Partie de la vérification de la conception: Document / Pièce justificative / Résultat / Rapport
11.2	Classe de protection des enveloppes et caches Degré de protection IP 2XC mini respecté		consigné dans le procès-verbal
11.3	Distances d'isolement et lignes de fuite		consigné dans le procès-verbal
11.4	Continuité des connexions des conducteurs de protection	Vérification par examen visuel Inspection des vis	consigné dans le procès-verbal
11.5	Montage de moyens d'exploitation	Vérification par examen visuel Identification des moyens d'exploitation	consigné dans le procès-verbal
11.6	Circuits internes / connexions	Vérification par examen visuel: Installation, marquage des connexions et raccords, inspection des vis	consigné dans le procès-verbal
11.7	Connexions pour conducteurs introduits de l'extérieur	Vérification du marquage par examen visuel	consigné dans le procès-verbal
11.8	Preuve du fonctionnement mécanique	ne s'applique pas	
11.9	Caractéristiques d'isolation	Mesure Riso avec = 500 V DC (Riso = 1 MΩ)	Valeurs de mesure consignées dans le procès-verbal
11.10	Inscriptions et documentation	Contrôle de l'intégrité	consigné dans le procès-verbal

8. Références bibliographiques

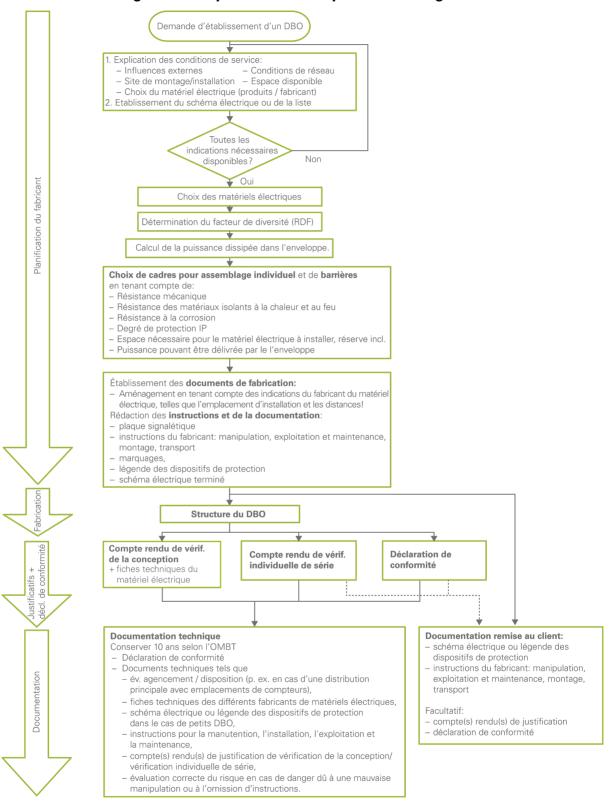
RS 734.26 Ordonnance sur les matériels électriques à basse tension (OMBT)

SN EN 61439-1 Ensemble d'appareillage à basse tension - Partie 1: Règles générales

SN EN 61439-3 Ensemble d'appareillage à basse tension - Partie 3: Tableaux de répartition


destinés à être utilisés par des personnes ordinaires (DBO)

SN 411000 Norme sur les installations à basse tension (NIBT) - en particulier le chapitre


5.2

Annexes

A.1 Annexe A.1 Diagramme séquentiel «Enveloppes vides»

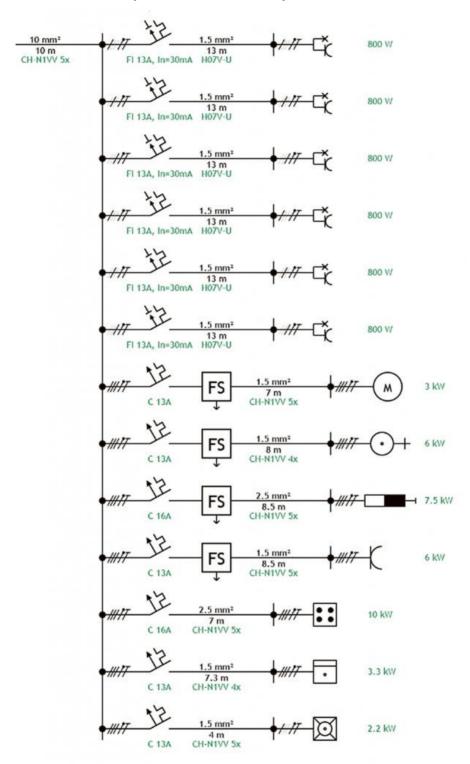
A.2 Annexe A.2 Diagramme séquentiel «Cadres pour assemblage individuel»

A.2 Annexe - Puissance de rayonnement des cadres pour assemblage individuel

Tableau A.2.1: Puissance de rayonnement Ps en W pour des cadres pour assemblage individuel de 100 mm pour Δ υ 20 K

	gadre pour assemblage individuel Profondeur [mm]														100
ЕН		Cadr	e pour	assen	nblage	indivi	duel L	argeur	[mm]						
Cadre pour assemblage individue		200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
divi	200	23	30	37	44	51	58	65	72	79	86	93	100	107	114
.⊑ e	300	31	40	48	57	66	75	84	93	101	110	119	128	137	156
olag	400	39	49	60	71	81	92	103	113	124	135	145	156	167	177
əme	500	47	59	72	84	97	109	122	134	147	159	172	184	197	209
3886	600	55	69	86	98	112	126	141	155	169	184	198	212	227	241
our 8	700	63	79	95	111	127	143	160	176	192	208	224	240	257	273
od e	800	71	89	107	125	143	161	179	197	215	233	251	269	287	305
adre	900	79	98	118	138	158	178	198	217	237	257	277	297	317	336
O	1000	87	108	130	152	173	195	216	238	260	281	303	325	346	368
	1100	95	118	141	165	188	212	235	259	282	306	329	353	376	400
	1200	102	128	153	178	204	229	254	280	305	330	356	381	406	432
	1300	110	138	165	192	219	246	273	301	328	355	382	409	436	463
	1400	118	147	176	205	234	263	292	321	350	379	408	437	466	495
	1500	126	157	188	219	250	280	311	342	373	404	435	465	496	527
	1600	134	167	200	232	265	298	330	363	396	428	461	493	526	559
	1700	142	177	211	246	280	315	349	348	418	453	481	522	556	590
	1800	150	187	223	259	296	332	368	404	441	477	513	550	586	622
	1900	158	196	235	273	311	349	387	425	463	502	540	578	616	654
	2000	166	206	246	286	326	366	406	446	486	526	566	606	646	686
l	2100	174	216	258	300	341	383	425	467	409	550	592	634	676	718
	2200	182	226	270	313	357	400	444	488	531	575	618	662	706	749

The bleau A.2.2: Puissance de rayonnement Ps en W pour des cadres pour assemblage individuel de 150 mm pour Δ υ 20 K


	gadre pour assemblage individuel Profondeur [mm]														150
T T		Cadre	pour	assen	nblage	indivi	duel L	argeur	[mm]						
assemblage individuel		200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
<u>:</u> E 20	00	30	39	48	56	65	74	83	91	100	109	117	126	135	143
.⊑ 30	00	41	51	62	72	83	93	104	114	125	135	146	156	167	177
belo 40	00	51	63	75	88	100	112	125	137	150	162	174	187	199	211
<u>ğ</u> 50	00	61	75	89	103	118	132	146	160	174	188	203	217	231	245
888 60	00	71	87	103	119	135	151	167	183	199	215	231	247	263	279
70	00	81	99	117	135	152	170	188	206	224	242	260	277	295	313
Cadre pour 80 80 80 80 80 80 80 80 80 80 80 80 80	00	91	111	131	150	17	190	209	229	249	268	288	308	327	347
adre 90	00	101	123	144	166	187	209	230	252	273	295	316	338	359	381
Ö 10	000	111	135	158	182	205	228	252	275	298	322	345	368	392	415
11	00	122	147	172	197	222	247	276	298	323	348	373	398	424	449
12	200	132	159	186	213	240	267	294	321	348	375	402	429	456	483
13	300	142	171	200	228	257	286	315	344	373	401	430	459	488	517
14	100	152	183	213	244	275	305	336	367	398	428	459	489	520	551
15	500	162	195	227	260	292	325	357	390	422	455	487	520	552	585
16	00	172	207	241	275	310	344	389	413	447	481	516	550	584	618
17	'00	182	219	255	291	327	363	399	436	472	508	544	580	616	652
18	300	193	231	269	307	345	383	420	458	496	534	572	610	648	686
19	900	203	243	282	322	362	402	442	481	521	561	601	641	680	720
20	000	213	255	296	338	379	421	463	504	546	588	629	671	713	754
21	00	223	266	310	353	397	440	484	527	571	614	658	701	745	788
22	200	233	278	324	369	414	460	505	550	596	641	686	731	777	822

The bleau A.2.3: Puissance de rayonnement Ps en W pour des cadres pour assemblage individuel de 200 mm pour Δ υ 20 K

	gadre pour assemblage individuel Profondeur [mm]														200
assemblage individuel Ha		Cadr	e pour	assen	nblage	individ	luel La	rgeur	[mm]						
due		200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
di∨i	200	38	48	59	69	80	90	100	111	121	131	142	152	163	173
.⊑	300	50	63	75	87	99	111	124	136	148	160	172	185	197	209
olag	400	63	77	91	105	119	133	147	141	175	189	203	217	231	245
amk	500	75	91	107	123	138	154	170	186	202	218	234	250	265	281
3SSE	600	87	105	123	140	158	176	193	211	229	247	264	282	300	317
	700	100	119	139	158	178	197	217	236	256	275	295	314	334	353
Cadre pour	800	112	133	155	176	197	219	240	261	283	304	325	347	368	390
adre	900	124	147	171	194	217	240	263	286	310	333	356	379	402	426
O	1000	136	161	186	212	237	262	287	312	337	362	387	412	437	462
	1100	149	176	202	229	256	283	310	337	364	390	417	444	471	498
	1200	161	190	218	247	276	304	333	362	390	419	448	477	505	534
	1300	173	204	234	2165	295	326	356	387	417	448	478	509	539	570
	1400	186	218	250	283	315	347	380	412	444	477	509	541	574	606
	1500	198	232	266	300	335	369	403	437	471	505	540	574	608	642
	1600	210	246	282	318	354	390	26	462	498	534	570	606	642	678
	1700	223	260	298	336	374	412	450	487	525	563	601	639	677	714
	1800	235	275	314	354	393	433	573	512	552	592	631	671	711	750
	1900	247	289	330	372	413	455	496	538	579	621	662	704	745	787
	2000	259	303	346	389	433	476	519	563	606	649	693	736	779	823
	2100	272	317	362	407	452	497	543	588	633	678	723	768	814	859
	2200	284	331	378	425	472	519	566	613	660	707	754	801	848	895

B.1 Annexe B1 Exemple d'évaluation de la conformité aux températures limites de tableaux de répartition

B.1.1 Situation de départ: Maison individuelle (plan d'installation)

B.1.2 Espace requis et détermination de la puissance de rayonnement de l'enveloppe

Tableau de calcul des besoins en espace et en chaleur:

Matériels	Matériels	Unités à 17,5 mm	Unités total	Pv en W	Pv tot en W	
FI-LS 2 pôles 13 A «C» / 30 mA	6	2	12	4.0	24.0	
Disjoncteurs de canalisation à 3 pôles 13 A «C»	5	3	15	8.0	40.0	
Disjoncteurs de canalisation à 3 pôles 16 A «C»	2	3	6	8.0	16.0	
Contacteurs à 4 pôles - 3NO /NO NC 20 A	4	2	8	6.5	26.0	
Emplacements de réserve pour extension ultérieure et bornes	12	1	12	5.0	72.0	•
		Unités	53		178.0	Pv pour RDF 1
Nombre de circuits pour RDF	13	en mm	927.5]	44.5	Pv pour RDF 0.5 ²
RDF pour > 10 circuits = 0,5		•	•	•	•	

Les matériels utilisés (correspondant au groupe 1) se comportent de manière quadratique par rapport au courant de charge. Dans ce cas, il est permis d'utiliser le RDF au carré.

Les résultats montrent qu'une enveloppe de \geq **930 mm** ou \geq **53 TE** doit être choisie et qu'elle doit avoir une puissance de rayonnement déterminée est conçue pour 20 K [dans l'enveloppe 40 °C / température ambiante 20°C].

Pour des températures ambiantes plus élevées ou des différences de température plus faibles à l'intérieur et à l'extérieur de l'enveloppe, la puissance de rayonnement requise doit être calculée.

